Abstract

Interactions between side chains spaced (i,i + 3) and (i,i + 4) may explain the context dependence of helix propensities observed in different systems. Nonpolar residues with these spacings occur frequently in protein helices and stabilize isolated peptide helices. Here (i,i + 3) and (i,i + 4) nonpolar interactions between Tyr and Leu in different solution conditions are studied in detail in alanine-based peptides using 2D 1H NMR and CD spectroscopy. Helix contents analyzed using current models for helix-coil transitions yield interaction energies which demonstrate significant helix stabilization in aqueous 1 M NaCl solutions by Tyr-Leu or Leu-Tyr pairs when spaced (i,i + 4) and, to a smaller extent, when spaced (i,i + 3), comparable to those estimated for other residue pairs. The interactions persist in solutions containing TFE, a helix-stabilizing solvent believed to diminish hydrophobic interactions, but not in helix-destabilizing 6 M urea. 1H NMR resonances for all peptides and solution conditions except in 6 M urea were completely assigned. NMR data indicate that the N-terminal residues are more helical and that the N-acetyl group participates in helix formation. The two (i,i + 4) spaced pairs show the same pattern of NOE cross-peaks between the Tyr and Leu side chains, as do the two (i,i + 3) pairs in 1 M NaCl as well in TFE solutions, and correspond well with that expected for the specific Tyr-Leu pair with side-chain contacts in protein helices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call