Abstract

We report a highly enantio- and helix-sense-selective encapsulation of helical poly(lactic acid)s (PLAs) through a unique "helix-in-helix" superstructure formation within the helical cavity of syndiotactic poly(methyl methacrylate) (st-PMMA) with a one-handed helicity memory, which enables the separation of the enantiomeric helices of the left (M)- and right (P)-handed-PLAs. The M- and P-helical PLAs with different molar masses and a narrow molar mass distribution were prepared by the ring-opening living polymerization of the optically pure l- and d-lactides, respectively, followed by end-capping of the terminal residues of the PLAs with a 4-halobenzoate and then a C60 unit, giving the C60-free and C60-bound M- and P-PLAs. The C60-free and C60-bound M- and P-PLAs formed crystalline inclusion complexes with achiral st-PMMA accompanied by a preferred-handed helix induction in the st-PMMA backbone, thereby producing helix-in-helix superstructures with the same-handedness to each other. The induced helical st-PMMAs were retained after replacement with the achiral C60, indicating the memory of the induced helicity of the st-PMMAs. Both the C60-free and C60-bound helical PLAs were enantio- and helix-sense selectively encapsulated into the helical hollow space of the optically active M- and P-st-PMMAs with the helicity memory prepared using chiral amines. The M- and P-PLAs are preferentially encapsulated within the M- and P-st-PMMA helical cavity with the same-handedness to each other, respectively, independent of the terminal units. The C60-bound PLAs were more efficiently and enantioselectively trapped in the st-PMMA compared to the C60-free PLAs. The enantioselectivities were highly dependent on the molar mass of the C60-bound and C60-free PLAs and significantly increased as the molar mass of the PLAs increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.