Abstract

The magnetic dipolar interaction between site-directed metal-nitroxide pairs can be exploited to measure distances within proteins [Voss, J., Salwinski, L., Kaback, H. R., and Hubbell, W. L. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 12295-12299; Voss, J., Hubbell, W. L., and Kaback, H. R. (1995) Proc. Natl. Acad. Sci. U.S. A. 92, 12300-12303], and the approach is utilized here to measure helix proximities in the lactose permease of Escherichia coli. A high-affinity divalent metal binding site was created by replacing Arg302 (helix IX) and Glu325 (helix X) with His residues in permease mutants containing single Cys residues in helices II, V, or VII and a biotin acceptor domain to facilitate purification. Mutant proteins were purified by avidin affinity chromatography, labeled specifically with a nitroxide free radical and investigated by electron paramagnetic resonance spectroscopy in the absence or presence of Cu(II). Spectral broadening due to bound Cu(II) was used to estimate distances between the metal center and the spin-labeled side chains. For each of the transmembrane domains probed, the variation in interspin distance with sequence position is consistent with an alpha-helical structure. The measured distances were also used to construct a model that is in good agreement with packing data obtained from other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.