Abstract

We present an analysis of α-helix folding in the coarse-grained coordinate of number of formed helical hydrogen bonds (NHBs) for four alanine peptides (ALA)n, with n = 5, 8, 15, and 21 residues. Starting with multi-microsecond all-atom molecular dynamics trajectories in aqueous solution, we represent the system dynamics in a space of between four (for ALA5) and twenty (for ALA21) hydrogen-bonding microstates. In all cases, transitions changing the hydrogen bond count by 1–2 dominate and the coil formation, NHB 1 → 0, is the fastest process. The calculation of global maximum weight paths shows that, when analyzed at a sufficiently long lag time, folding in the NHB coordinate is consecutive, with direct folding, 0 → 3, for ALA5 and bottlenecks at transitions 4 → 6 for ALA8, 0 → 5 for ALA15, and 0 → 9 for ALA21. Further coarse-graining to 2–4 dimensions was performed with the optimal dimensionality reduction method, allowing the identification of crucial folding intermediates and time scales of their formation in ALA8, ALA15, and ALA21. The detailed analysis of hydrogen bonding patterns revealed that folding is initiated preferentially at both peptide termini. The kinetic model was also used to estimate diffusion and friction coefficients for helix propagation. The description of the helix formation process in the hydrogen bonding coordinate NHB was in good general agreement with the experimental data and qualitatively similar to previous kinetic models of higher dimensions based on structural clustering. Use of the low-dimensional hydrogen bonding picture thus provides a different, complementary way of describing the complex and fascinating mechanism of helix formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.