Abstract
The progenitors of Type Ia Supernovae (SNe Ia) are still unknown, despite significant progress during the last years in theory and observations. Violent mergers of two carbon--oxygen (CO) white dwarfs (WDs) are one candidate suggested to be responsible for at least a significant fraction of normal SNe Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that allows for the inclusion of thin helium (He) shells (0.01\,\msun) on top of the WDs, at an unprecedented numerical resolution. The accretion of He onto the primary WD leads to the formation of a detonation in its He shell. This detonation propagates around the CO WD and sends a converging shock wave into its core, known to robustly trigger a second detonation, as in the well-known double-detonation scenario for He-accreting CO WDs. However, in contrast to that scenario where a massive He shell is required to form a detonation through thermal instability, here the He detonation is ignited dynamically. Accordingly the required He-shell mass is significantly smaller, and hence its burning products are unlikely to affect the optical display of the explosion. We show that this scenario, which works for CO primary WDs with CO- as well as He-WD companions, has the potential to explain the different brightness distributions, delay times and relative rates of normal and fast declining SNe Ia. Finally, we discuss extensions to our unified merger model needed to obtain a comprehensive picture of the full observed diversity of SNe Ia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.