Abstract

Coated plutonia fuel particles have recently been proposed for potential use in future space exploration missions that employ radioisotope power systems and/or radioisotope heater units (RHUs). The design of this fuel form calls for full retention of the helium generated by the natural radioactive decay of 238Pu, with the aid of a strong zirconium carbide coating. This paper reviews the potential release mechanisms of helium in small-grain (7–40 μm) plutonia pellets currently being used in the General Purpose Heat Source (GPHS) modules and RHUs, during both steady-state and transient heating conditions. The applicability of these mechanisms to large-grain and polycrystalline 238PuO2 fuel kernels is examined and estimates of helium release during a re-entry heating pulse up to 1723 K are presented. These estimates are based on the reported data for fission gas release from granular and monocrystal UO2 fuel particles irradiated at isothermal conditions up to 6.4 at.% burnup and 2030 K. It is concluded that the helium release fraction from large-grain (⩾300 μm) plutonia fuel kernels heated up to 1723 K could be less than 7%, compared to ∼80% from small-grain (7–40 μm) fuel. The helium release fraction from polycrystalline plutonia kernels fabricated using Sol-Gel techniques could be even lower. Sol-Gel fabrication processes are favored over powder metallurgy, because of their high precision and excellent reproducibility and the absence of a radioactive dust waste stream, significantly reducing the fabrication and post-fabrication clean-up costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.