Abstract

Hepatic ischemia and reperfusion (I/R) injury is a major complication of liver transplantation, hepatic resection and trauma. Helium preconditioning (HPC) exerts protection against ischemic stress. We investigated potential beneficial effects of HPC on I/R-induced liver injury and investigated mechanisms underlying HPC-induced protection. We employed a model of segmental warm hepatic I/R on BALB/c mice. Serum ALT was measured and livers were analysed by histology, RT-PCR and western blot. HPC was induced by inhalation of a 70% helium/30% oxygen mixture for three 5-min periods, interspersed with three 5-min washout periods by room air. We tested which component of HPC (the helium/air mixture inhalation, the air room gap, or the interaction between these two factors) is protective. We found that HPC caused a significant increase in Akt phosphorylation in hepatocytes. The HPC-induced Akt phosphorylation resulted in decreased hepatocellular injury and improved survival rate of the treated animals. PI3K inhibitors abolished HPC induced effects. HPC-induced Akt phosphorylation affected expression of its downstream molecules. The effects of HPC on the PI3K/Akt pathway were attenuated by adenosine A2A receptor blockade, but could be re-established by PTEN inhibition. We demonstrated that the interaction of helium/air breathing and air gaps is responsible for the observed effects of HPC. HPC may be a promising strategy leading to a decrease in I/R induced liver injury in clinical settings. Additionally, the PI3K/Akt pathway plays an essential role in the protective effects of HPC in hepatic I/R injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call