Abstract

There are increasing studies that show nanotwinned (NT) metals have enhanced radiation tolerance. However, the mechanical deformability of irradiated nanotwinned metals is a largely under explored subject. Here we investigate the mechanical properties of He ion irradiated nanotwinned Cu with preexisting nanovoids. In comparison with coarse-grained Cu, nanovoid nanotwinned (NV-NT) Cu exhibits prominently improved radiation tolerance. Furthermore, in situ micropillar compression tests show that the irradiated NV-NT Cu has an ultrahigh yield strength of ∼1.6 GPa with significant plasticity. Post radiation analyses show that twin boundaries are decorated with He bubbles and thick stacking faults. These stacking fault modified twin boundaries introduce significant strengthening in NT Cu. This study provides further insight into the design of high-strength, advanced radiation tolerant nanostructured materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.