Abstract

To date, chemical imaging of polymers and polymer blends has been primarily accomplished using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to directly visualize the distribution of components in a complex material with spatial resolution ranging from 100 nm to 5 μm. However, in many cases, this resolution falls far short of visualizing interfaces directly. To overcome these limitations, recent work has focused on developing a SIMS detection system based on a helium ion microscope (HIM) enabling chemical imaging with a demonstrated ∼14 nm spatial resolution. Here, we utilize HIM-SIMS for differentiation between the olefin-based polymers of polyethylene (PE) and polypropylene (PP). We illustrate both analyses for separating PE and PP using specific mass fragment ratios as well as demonstrate spatially resolved imaging of phase-separated domains within PE. Overall, we demonstrate the abilities of HIM-SIMS as a multimodal chemical technique for imaging and quantification of polyolefin interfaces, which could be more broadly applied to the analysis of more complex polymeric systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call