Abstract

ABSTRACTHelium embrittlement poses a great threat to materials used in both fusion and fissionreactor systems due to (n,α) transmutation reactions. Because of this, materials capable of moderating the helium content reaching grain boundaries and voids must be developed and improved to prevent catastrophic failure of reactor materials. Nanostructured ferritic alloys (NFAs) have shown great promise in preventing helium embrittlement due to the large number density of nanoscale precipitates acting as trapping sites for helium clusters and helium bubbles. In this study, we present density functional theory calculations on the interaction of helium with nanoscale precipitates found in NFAs as a preliminary study to furthering our understanding of the energetic mechanisms causing the precipitates to act as trapping sites for helium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.