Abstract

ABSTRACTThe formation of cavity microstructures in silicon following helium implantation (10 or 40 keV; 1×1015, l×1016 and 5×1016 cm−2) and annealing (800 °C) is investigated by means of Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry and Channeling (RBS/C), and Elastic Recoil Detection (ERD). The processes of cavity nucleation and growth are found to depend critically on the implanted He concentration. For a maximum peak He concentration of about 5×1020 cm−3 the resulting microstructure appears to contain large overpressurized bubbles whose formation cannot be accounted by the conventional gas-release model and bubble-coarsening mechanisms predicting empty cavities. The trapping of Fe and Cu at such cavity regions is studied by Secondary Ion Mass Spectrometry (SIMS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.