Abstract

We present a combined experimental and theoretical study of the RbSr molecule. The experimental approach is based on the formation of RbSr molecules on helium nanodroplets. Utilizing two-photon ionization spectroscopy, an excitation spectrum ranging from 11,600 up to 23,000 cm(-1) was recorded. High level ab initio calculations of potential energy curves and transition dipole moments accompany the experiment and facilitate an assignment of transitions. We show that RbSr molecules desorb from the helium droplets upon excitation, which enables dispersed fluorescence spectroscopy of free RbSr. These spectra elucidate X(2)Σ(+) ground and excited state properties. Emission spectra originating from states corresponding to the Rb(5s(2)S) + Sr(5s5p(3)P) asymptote were recorded; spin-orbit coupling was included for the simulation. The results should provide a good basis for achieving the formation of this molecule in cold collisions, thus offering intriguing prospects for ultracold molecular physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.