Abstract

In this paper, a continuous tracking strategy for the heliostat in the James S. Markiewicz Concentrated Solar Energy Research Facility at Valparaiso University is developed. A model of the nonlinear dynamics of the heliostat motion is developed and the open-loop control strategy is presented. Asymptotic stability of the heliostat control using the Lyapunov and LaSalle’s theorems was proven. Simulations using the nonlinear dynamic model are presented and interpreted to identify the feedback gain that maximizes the time response of the heliostat without introducing oscillations in its motion. Finally, the control strategy is put to the test during summertime operation. The data presented show that the tracking strategy has an root mean square (RMS) tracking error of 0.058 mrad, where the error is defined as the difference between the desired and actual heliostat positions. Images of the aperture of a high-temperature solar receiver over 8 h of testing are also presented to qualitatively demonstrate the success of the tracking strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call