Abstract

Helios+FoxP3+CD4+ (Helios+) Treg cells are believed to be involved in the regulation of various autoimmune diseases; however, the regulatory mechanisms underlying the development of Helios+ Treg cells remain uncertain. This study was undertaken to elucidate the regulatory mechanisms of Helios expression in CD4+ T cells and its roles in transforming growth factor β (TGFβ)-induced Treg cell function. We examined the expression of Helios in CD4+ T cells in patients with rheumatoid arthritis by DNA microarray analysis before and after treatment with biologic agents. We also examined the effect of interleukin-6 (IL-6) and TGFβ on Helios expression in CD4+ T cells in humans and mice. The effect of forced expression of Helios on murine induced Treg cell function was also examined. The role of FoxP3 in the induction and function of Helios was assessed by using CD4+ T cells from FoxP3-deficient scurfy mice. Tocilizumab, but not tumor necrosis factor (TNF) inhibitors or abatacept, increased Helios expression in CD4+ T cells in patients with a good response. IL-6 inhibited the TGFβ-induced development of Helios+ induced Treg cells in both humans and mice. Both cell-intrinsic FoxP3 expression and TGFβ signaling were required for Helios induction in murine induced Treg cells. The forced expression of Helios enhanced the expression of various Treg cell-related molecules and the suppressive function in murine induced Treg cells. Helios-mediated enhancement of the suppressive function of induced Treg cells was obvious in FoxP3-sufficient CD4+ T cells but not in FoxP3-deficient CD4+ T cells. Our findings indicate that Helios enhances induced Treg cell function in cooperation with FoxP3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call