Abstract

As part of an effort to test the ability of current transport codes to treat reactor core problems without spatial homogenization, the lattice code HELIOS was employed to perform criticality calculations. The test consists in seven-group calculations of the C5 MOX fuel assembly problem specified by Cavarec et. al. [1]. This problem, known as C5G7 MOX Benchmark, is described in the Benchmark Specification [2] and comprises two cases — two and three-dimensional geometry. There are four fuel assemblies — two with MOX fuel, the other two with UO 2 fuel. Each fuel assembly is made up of a 17×17 lattice of square fuel-pin cells. Fuel pin compositions are specified in the Benchmark Specification, which also provides seven-group transport-corrected isotropic scattering cross-sections for U0 2, the three MOX enrichments, the guide tubes, the fission chamber and the moderator. This paper preset is the methodology employed in solving the C5G7 MOX Fuel Assembly Problem using the transport code HELIOS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call