Abstract

Aims. A linear scaling of the mixed third-order moment of the magnetohydrodynamic (MHD) fluctuations is used to estimate the energy transfer rate of the turbulent cascade in the expanding solar wind. Methods. In 1976, the Helios 2 spacecraft measured three samples of fast solar wind originating from the same coronal hole, at different distances from the Sun. Along with the adjacent slow solar wind streams, these intervals represent a unique database for studying the radial evolution of turbulence in samples of undisturbed solar wind. A set of direct numerical simulations of the MHD equations performed with the Lattice-Boltzmann code FLAME was also used for interpretation. Results. We show that the turbulence energy transfer rate decays approximately as a power law of the distance and that both the amplitude and decay law correspond to the observed radial temperature profile in the fast wind case. Results from MHD numerical simulations of decaying MHD turbulence show a similar trend for the total dissipation, suggesting an interpretation of the observed dynamics in terms of decaying turbulence and that multi-spacecraft studies of the solar wind radial evolution may help clarify the nature of the evolution of the turbulent fluctuations in the ecliptic solar wind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.