Abstract

Microbial studies of the Mediterranean sponge Tethya aurantium led to the isolation of the fungus Bartalinia robillardoides strain LF550. The strain produced a number of secondary metabolites belonging to the chloroazaphilones. This is the first report on the isolation of chloroazaphilones of a fungal strain belonging to the genus Bartalinia. Besides some known compounds (helicusin A (1) and deacetylsclerotiorin (2)), three new chloroazaphilones (helicusin E (3); isochromophilone X (4) and isochromophilone XI (5)) and one new pentaketide (bartanolide (6)) were isolated. The structure elucidations were based on spectroscopic analyses. All isolated compounds revealed different biological activity spectra against a test panel of four bacteria: three fungi; two tumor cell lines and two enzymes.

Highlights

  • Filamentous fungi represent an important group of microorganisms known for effective production of secondary metabolites

  • In preliminary experiments strain LF550 was isolated from the marine sponge Tethya aurantium in contrast to other known Bartalinia robillardoides strains, including the paclitaxel producer, which are reported to be endophytic [2]

  • Bartalinia robillardoides strain LF550 was isolated from the marine sponge Tethya aurantium, originated from the Limsky kanal (Canal di Lemme or Limsky channel, Croatia), a small fjord in the Mediterranean

Read more

Summary

Introduction

Filamentous fungi represent an important group of microorganisms known for effective production of secondary metabolites. In nature these compounds play a role e.g., in communication pathways or as a defense against other microorganisms. On top of the advantageous effects for their producers, fungal secondary metabolites often show considerable affinity to mammalian targets resulting in pharmaceutically relevant bioactivities. These metabolites can be used for human benefit as they have a potential to be used as drugs [1]. Strains of the genus Bartalinia robillardoides have been shown to produce paclitaxel, an anticancer drug already clinically applied [2]. Azaphilones comprise pigments and a variety of molecules with different bioactivities [5]

Results and Discussion
Structure Elucidation
Elucidation of the Absolute Configurations of 1–6
Inhibitory Activities of the Compounds
General
Bioassays
Computational Details
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call