Abstract

Dynamic Stall is a flow phenomenon which occurs on helicopter rotor blades during forward flight mainly on the retreating side of the rotor disc. This phenomenon limits the speed of the helicopter and its manoeuvrability. Strong excursions in drag and pitching moment are typical unfavourable characteristics of the Dynamic Stall process. However compared to the static polar the lift is considerably increased. Looking more into the flow details it is obvious that a strong concentrated vortex, the Dynamic Stall Vortex, is created during the up-stroke motion of the rotor blade starting very close to the blade leading edge. This vortex is growing very fast, is set into motion along the blade upper surface until it lifts off the surface to be shed into the wake. The process of vortex lift off from the surface leads to the excursions in forces and moment mentioned above. The Dynamic Stall phenomenon does also occur on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. In the present paper the different aspects of unsteady flows during the Dynamic Stall process are discussed in some detail. Some possibilities are also pointed out to favourably influence dynamic stall by either static or dynamic flow control devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.