Abstract

Cell wall microfibril alignment in the tubular portion of Equisetum hyemale root hairs is helicoidal. Lamellae of helicoidal texture are deposited from tip to base; thus, different microfibril orientations are aligned with the plasma membrane successively. Zones with constant mean microfibril orientation are about 300 μm long. In any such zone of dry-cleaned, shadowed preparations, the frequency of microfibrils at the proximal end is 5 to 7 microfibrils per micrometre, which decreases to 0 at the distal end. The orientation of microfibrils of the underlying lamella, the microfibril frequency of which is 5 to 7/μm throughout, is the same as the microfibril orientation of the neighbouring distal lamella. Microfibrils of the cell wall are randomly oriented in the hair dome. Microtubule alignment in these root hairs was examined by means of freeze substitution. In the extreme tip of the root hair, microtubules run parallel to the plasma membrane and transverse to the long axis of the hair; the hemisphere of the hair contains randomly oriented microtubules. From extreme tip to base of the hair dome, microtubules become more and more axially aligned, and remain axially oriented in the hair tube. Further down the hair, where microfibril alignment is transverse and microfibrils are actively being deposited, microtubules still run in the axial direction. The observations emphasize the involvement of microtubles in root hair tip morphogenesis, but not in determining the alignment of the microfibrils in the hair tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call