Abstract

We present a calculation of the effective geometry-induced quantum potential for the carriers in graphene shaped as a helicoidal nanoribbon. In this geometry the twist of the nanoribbon plays the role of an effective transverse electric field in graphene and this is reminiscent of the Hall effect. However, this effective electric field has a different sign for the two iso-spin states and translates into a mechanism to separate the two chiral species on the opposing rims of the nanoribbon. Iso-spin transitions are expected with the emission or absorption of microwave radiation which could be adjusted to be in the THz region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call