Abstract

We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ-marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.