Abstract

Helicobacter pylori infection causes chronic inflammation in the stomach, which is linked to the development of gastric cancer. The anti-inflammatory and anticancer effects of a glycolysis inhibitor 2-deoxyglucose (2DG) and an antidiabetic medication metformin (Met) have gotten attention. Using a Mongolian gerbil animal model, we investigated H. pylori-mediated gastric pathogenesis and how this pathogenesis is influenced by 2DG and Met. Five-week-old male gerbils were infected with H. pylori strain 7.13. After 2 weeks of infection, gerbils were fed 2DG-containing food (0.03% w/w), Met-containing water (0.5% w/v), or both (Combi) for 2 (short-term) or 10 weeks (long-term). Gastric pathogenesis and host response to H. pylori infection were examined by macroscopic and histopathologic analysis of gerbils' stomach. As a result, indicators of gastric pathogenesis by H. pylori infection including infiltration of polymorphonuclear neutrophils and lymphocytes, intestinal metaplasia, atrophy, and proliferation of gastric epithelial cells were attenuated by short-term administration of 2DG, Met, or Combi. When the infection was sustained for long-term, gastric pathogenesis in drug-treated gerbils was equivalent to that in untreated gerbils, with the exception that the infiltration of neutrophil was reduced by 2DG. Colonization of H. pylori in stomach was unaffected by both short- and long-term treatments. Our findings demonstrate that the progression of gastric pathogenesis induced by H. pylori infection can be attenuated by the short-term individual or combinational treatment of 2DG and Met, implying that 2DG or Met could be considered as a treatment option for gastric diseases in the early stages of infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call