Abstract

H. pylori infection can lead to gastric diseases by modulating the various cellular processes such as cellular stress, apoptosis, autophagy, and metabolic changes. H. pylori exposed gastric epithelial cells bypass the cell death pathways. However, the underlying molecular mechanisms remain in infancy. Herein, we determined that H. pylori infection on gastric epithelial cells bypass the cell death pathway via the modulation of autophagy-related signaling molecules (LC3B and ATG7) through the host-associated oncoprotein Gankyrin. Upregulated expression of Gankyrin further enhanced the various antioxidant (gclm, gclc, sod2, cat, keap1, ant, and hsf1) and autophagy-associated genes’ transcripts (atg5, atg7, lc3b, beclin, and sqstm1). Elevated expression of Gankyrin also modulates the various downstream signaling proteins such as Akt, Beta-catenin, and NFkB. We also observed altered cancerous properties of gastric epithelial cells viz; apoptosis, wound healing, chemoresistance, biomass and membrane potential of mitochondria. Concisely, the study revealed that H. pylori infection promotes GC via autophagy through the modulation of oncoprotein Gankyrin and cellular reactive oxygen species (ROS). Overall, our study demonstrated the antiapoptotic property of H pylori-infected gastric epithelial cells might govern through Gankyrin-directed autophagy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.