Abstract

BackgroundHelicobacter pylori outer membrane vesicles (OMVs) are nano-sized structures, which have been recently suggested to play a crucial role in H. pylori pathogenesis. There are growing evidence indicating the relationship of H. pylori infection with extra-gastroduodenal diseases, especially liver-related disorders. This study was aimed to investigate the effects of H. pylori-derived OMVs on autophagy in hepatic stellate cells (HSCs). Material and methodsA selection of five clinical strains of H. pylori with different virulence genotypes were included. The OMVs were isolated by ultracentrifugation and characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The protein concentration of OMVs was measured by BCA assay. MTT assay was used to determine the viability of LX-2 cells (human HSCs) treated with OMVs. The expression level of MTOR, AKT, PI3K, BECN1, ATG16 and LC3B genes was assessed in OMVs-treated LX-2 cells using quantitative real-time PCR. Moreover, immunocytochemistry was performed to evaluate the protein expression of MTOR and LC3B autophagy markers. ResultsH. pylori strains produced round shape nano-vesicles ranging from 50 to 500 nm. Treatment of HSCs with H. pylori-derived OMVs at concentration of 10 μg/mL for 24 h significantly elevated the expression of autophagy inhibitory markers (PI3K, AKT, and MTOR) and suppressed the mRNA expression level of autophagy core proteins (BECN1, ATG16 and LC3B). Immunocytochemistry also presented a substantial reduction in the concentration of LC3B autophagy core protein, and a marked elevation in the amount of MTOR autophagy inhibitory protein. ConclusionThis study revealed that H. pylori-derived OMVs could potentially suppress autophagy flux in HSCs as a novel mechanism for H. pylori-mediated liver autophagy impairment and liver disease development. Further studies are required to elucidate the exact role of OMV-carried contents in liver autophagy, and liver-associated disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call