Abstract

Infection with Helicobacter pylori represses expression of the gastric H, K-adenosine triphosphatase alpha-subunit (HKalpha), which could contribute to transient hypochlorhydria. CagL, a pilus protein component of the H pylori type IV secretion system, binds to the integrin alpha(5)beta1 to mediate translocation of virulence factors into the host cell and initiate signaling. alpha(5)beta1 binds a disintegrin and metalloprotease (ADAM) 17, a metalloenzyme that catalyzes ectodomain shedding of receptor tyrosine kinase ligands. We investigated whether H pylori-induced repression of HKalpha is mediated by CagL activation of ADAM17 and release of heparin-binding epidermal growth factor (HB-EGF).HKalpha promoter and ADAM17 activity were measured in AGS gastric epithelial cells transfected with HKalpha promoter-reporter constructs or ADAM17-specific small interfering RNAs and infected with H pylori. HB-EGF secretion was measured by enzyme-linked immunosorbent assay analysis, and ADAM17 interaction with integrins was investigated by coimmunoprecipitation analyses.Infection of AGS cells with wild-type H pylori or an H pylori cagL-deficient isogenic mutant that also contained a wild-type version of cagL (P12DeltacagL/cagL) repressed HKalpha promoter-Luc reporter activity and stimulated ADAM17 activity. Both responses were inhibited by point mutations in the nuclear factor-kappaB binding site of HKalpha or by infection with P12DeltacagL. Small interfering RNA-mediated silencing of ADAM17 in AGS cells inhibited the repression of wild-type HKalpha promoter and reduced ADAM17 activity and HB-EGF production, compared to controls. Coimmunoprecipitation studies of AGS lysates showed that wild-type H pylori disrupted ADAM17-alpha5beta1 complexes.During acute H pylori infection, CagL dissociates ADAM17 from the integrin alpha(5)beta1 and activates ADAM17-dependent, nuclear factor-kappaB-mediated repression of HKalpha. This might contribute to transient hypochlorhydria in patients with H pylori infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.