Abstract

Helicobacter pylori infection of the gastric mucosa is accompanied by an activated histamine metabolism. Histamine plays a central role in the regulation of gastric acid secretion and is involved in the pathogenesis of gastroduodenal ulcerations. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production, and its activity is regulated through transcriptional mechanisms. The present study investigated the effect of H. pylori infection on the transcriptional activity of the human HDC (hHDC) promoter in a gastric epithelial cell line (AGS) and analyzed the underlying molecular mechanisms. Our studies demonstrate that H. pylori infection potently transactivated the hHDC promoter. The H. pylori-responsive element of the hHDC gene was mapped to the sequence +1 to +27 base pairs, which shows no homology to known cis-acting elements and also functions as a gastrin-responsive element. H. pylori regulates the activity of this element via a Raf-1/MEK/ERK pathway, which was activated in a Ras-independent manner. Furthermore, we found that H. pylori-induced transactivation of the hHDC promoter was independent of the cag pathogenicity island and the vacuolating cytotoxin A gene and therefore may be exerted through (a) new virulence factor(s). A better understanding of H. pylori-directed hHDC transcription can provide novel insights into the molecular mechanisms of H. pylori-dependent gene regulation in gastric epithelial cells and may lead to new therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.