Abstract

Mechanical rotation of a magnetic stirrer or a rotary evaporator can induce an enantiomeric excess of supramolecular species. In this study, we investigate the effect of fluid motion in a rotary evaporator on chiral supramolecular species. It is shown theoretically that the twisting effect of fluid motion on cylindrical particles is expressed in terms of helicity dissipation rate. Helicity dissipation can be interpreted as the helicity transfer from helical fluid motion to chiral supramolecular structures. A numerical simulation of flow in a rotary evaporator was carried out to evaluate the helicity and its dissipation rate. The volume integral of the helicity dissipation in the computational domain showed a positive value; its sign agrees with experiment in which the right-handed helical structures of J-aggregates were induced by the counter-clockwise rotation of a rotary evaporator. Furthermore, terms in the transport equation for the helicity were evaluated for investigating the helicity behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.