Abstract

The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call