Abstract
This paper concerns connections between dynamical systems, knots and helicity of vector fields. For a divergence-free vector field on a closed three-manifold that generates an Anosov flow, we show that the helicity of the vector field may be recovered as the limit of appropriately weighted averages of linking numbers of periodic orbits, regarded as knots. This complements a classical result of Arnold and Vogel that, when the manifold is a real homology three-sphere, the helicity may be obtained as the limit of the normalised linking numbers of typical pairs of long trajectories. We also obtain results on the asymptotic distribution of weighted averages of null-homologous periodic orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.