Abstract

We study the evolution of twist and magnetic helicity in the coronal fields of active regions as they emerge. We use multiday sequences of Solar and Heliospheric Observatory Michelson Doppler Interferometer magnetograms to characterize the region's emergence. We quantify the overall twist in the coronal field, α, by matching a linear force-free field to bright coronal structures in EUV images. At the beginning of emergence, all regions studied have α 0. As the active region grows, α increases and reaches a plateau within approximately 1 day of emergence. The inferred helicity transport rate is larger than differential rotation could produce. Following the 2000 work of Longcope & Welsch, we develop a model for the injection of helicity into the corona by the emergence of a twisted flux tube. This model predicts a ramp-up period of approximately 1 day. The observed time history α(t) is fitted by this model assuming reasonable values for the subphotospheric Alfven speed. The implication is that helicity is carried by twisted flux tubes rising from the convection zone and transported across the photosphere by spinning of the poles driven by magnetic torque.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.