Abstract

It is established that prion protein is the sole causative agent in a number of diseases in humans and animals. However, the nature of conformational changes that the normal cellular form PrPC undergoes in the conversion process to a self-replicating state is still not fully understood. The ordered C-terminus of PrPC proteins has three helices (H1, H2, and H3). Here, we use the Statistical Coupling Analysis (SCA) to infer co-variations at various locations using a family of evolutionarily related sequences, and the response of mouse and human PrPCs to mechanical force to decipher the initiation sites for transition from PrPC to an aggregation prone PrP* state. The sequence-based SCA predicts that the clustered residues in non-mammals are localized in the stable core (near H1) of PrPC whereas in mammalian PrPC they are localized in the frustrated helices H2 and H3 where most of the pathogenic mutations are found. Force-extension curves and free energy profiles as a function of extension of mouse and human PrPC in the absence of disulfide (SS) bond between residues Cys179 and Cys214, generated by applying mechanical force to the ends of the molecule, show a sequence of unfolding events starting first with rupture of H2 and H3. This is followed by disruption of structure in two strands. Helix H1, stabilized by three salt-bridges, resists substantial force before unfolding. Force extension profiles and the dynamics of rupture of tertiary contacts also show that even in the presence of SS bond the instabilities in most of H3 and parts of H2 still determine the propensity to form the PrP* state. In mouse PrPC with SS bond there are about ten residues that retain their order even at high forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call