Abstract

Here we report the first experimental observation of magneto-chiral dichroism (MChD) detected through light absorption in an enantiopure lanthanide complex. The P and M enantiomers of [YbIII((X)-L)(hfac)3] (X = P, M; L = 3-(2-pyridyl)-4-aza[6]-helicene; hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate), where the chirality is held by the helicene-based ligand, were studied in the near-infrared spectral window. When irradiated with unpolarized light in a magnetic field, these chiral complexes exhibit a strong MChD signal (gMChD ca. 0.12 T-1) associated with the 2F5/2 ← 2F7/2 electronic transition of YbIII. The low temperature absorption and MChD spectra reveal a fine structure associated with crystal field splitting and vibronic coupling. The temperature dependence of the main dichroic signal detected up to 150 K allowed, for the first time, the disentanglement of the two main microscopic contributions to the dichroic signal predicted by the MChD theory. These findings pave the way toward probing MChD in chiral lanthanide-based single-molecule magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.