Abstract

Helicases are molecular-motor enzymes that manipulate DNA or RNA during replication, repair, recombination, transcription, translation and processing of nucleic acids. The mechanisms for helicase activity have been studied intensely over the past decade. Recent advances in our understanding of the helicase mode of action have led to a general convergence of models that describe this diverse class of enzymes. One mechanism has been proposed that appears to have withstood the test of time, namely the inchworm mechanism. As the name implies, this mechanism involves a process whereby a helicase maintains at least two sites of contact with the nucleic acid. These binding sites can move relative to one another in a sequential fashion, resulting in net movement of the enzyme along the nucleic acid. The inchworm mechanism appears to be applicable to oligomeric states beyond the simple monomeric molecular motor. Although there are certainly many pertinent questions that remain unanswered, striking similarities in both form and function of seemingly disparate enzymes are becoming evident.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.