Abstract

The winding current density of a superconducting coil is one of the key parameters to realize high field magnet systems with smaller sized superconducting coil. Force-balanced coil (FBC) which is a helically wound toroidal coil can control the distribution of working stresses and minimize the structure requirements by selecting an optimal number of poloidal turns. The winding current density of a superconducting coil is estimated from the relationship between ampere-meters of conductor and structure requirements based on the virial theorem. In this case, the FBC can obtain the stored energy for the same winding current density 20 times larger than that in the toroidal field coils case and about 120 times larger than that in the solenoid case. By applying the FBC concept, superconducting magnets will be realized in smaller size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.