Abstract
AbstractThe effects of several microstructural parameters on the mechanical behaviour of a helically perforated thin film structure, or inverse microspring, were investigated using a finite element model[1]. The parameters investigated were the helical pitch angle, the cross-section radius, and the coil spacing. The elastic modulus was found to depend most strongly on the helical pitch angle (changing by a factor of 1.3 as the pitch angle went from 35° to 70°). Variations in the coil radius and the film thickness had a minor effect on the modulus. It was also found that using a finite size model (as opposed to an infinite model using periodic boundary conditions) produced better conditioned results. A preliminary confirmation of the model's validity was performed by comparison to nanoindentation results of a nickel helically perforated thin film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.