Abstract

We consider solitons in a nonlinear optical fiber with a single polarization in a region of parameters where it carries exactly two distinct modes, viz., the fundamental one and the first-order helical mode. From the viewpoint of applications to dense-WDM communication systems, this opens a way to double the number of channels carried by the fiber. Aside from that, experimental observation of helical (spinning) solitons (that can be launched and detected, using helicity-generating phase masks) and collisions between them and with fundamental solitons in (ordinary or hollow) optical fibers is an issue of fundamental interest, especially because it has been very recently found that spatiotemporal spinning solitons in bulk optical media with various nonlinearities are unstable. We introduce a system of coupled nonlinear Schrödinger equations for fundamental and helical modes, computing nonstandard values of the cross-phase-modulation coupling constants in it, and investigate, analytically and numerically, results of “complete” and “incomplete” collisions between solitons carried by the two modes. We conclude that the collision-induced crosstalk is partly attenuated in comparison with the usual WDM system, which sometimes may be crucially important, preventing merger of the colliding solitons into a breather. The interaction between the two modes is found to be additionally strongly suppressed in comparison with that in the WDM system in the case when a dispersion-shifted or dispersion-compensated fiber is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.