Abstract

We report the synthesis of enantiomerically pure carbo[6]helicene oligomers with buta-1,3-diyne-1,4-diyl bridges between the helicene nuclei. The synthesis of monomeric (±)-2,15-bis[(triisopropylsilyl)ethynyl]carbo[6]helicene was achieved in 25 % yield over six steps. Pure (+)-(P)- and (-)-(M)-enantiomers were obtained by HPLC on a chiral stationary phase. The dimeric (+)-(P)2 - and (-)-(M)2 -configured and the tetrameric (+)-(P)4 - and (-)-(M)4 -configured oligomers were obtained by sequential oxidative acetylenic coupling. The ECD spectra of the tetrameric oligomers displayed large Cotton effect intensities of Δϵ=-851 m-1 cm-1 at λ=370 nm ((M)4 -enantiomer). We transformed the buta-1,3-diyne-1,4-diyl bridge in the dimeric (P)2 and (M)2 oligomer by heteroaromatization into a thiene-2,5-diyl linker. Although the resulting chromophore showed reduced ECD intensities, it exhibited a remarkably strong fluorescence emission at 450-500 nm, with an absolute quantum yield of 25 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.