Abstract
We apply the boundary-element method to Stokes flows with helical symmetry, such as the flow driven by an immersed rotating helical flagellum. We show that the two-dimensional boundary integral method can be reduced to one dimension using the helical symmetry. The computational cost is thus much reduced while spatial resolution is maintained. We review the robustness of this method by comparing the simulation results with the experimental measurement of the motility of model helical flagella of various ratios of pitch to radius, along with predictions from resistive-force theory and slender-body theory. We also show that the modified boundary integral method provides reliable convergence if the singularities in the kernel of the integral are treated appropriately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.