Abstract

The conditions for the formation and stability of helical quasi-crystals in a complex plasma containing dust grains of equal size are investigated. A study is made of both the confinement of such helical structures in a direction transverse to the cylinder axis by means of an external parabolic potential well and the possibility of their self-confinement. Computer simulations of the helical dust structures were carried for two cases: for a structure of infinite length along the symmetry axis (or a closed structure in toroidal geometry) and for a structure of finite length. The dust grains were assumed to interact through a potential that is a superposition of the non-Debye nonlinear screened potential and the nonscreened noncollective attractive potential (the Lesage effect). Molecular dynamics simulations showed that, in the presence of dissipation, any initial random distribution of the dust grains interacting through such a potential in cylindrical geometry evolves to an equilibrium helical structure. When the external control parameter was varied smoothly, the pitch angle of the helix was observed to bifurcate (i.e., to undergo sharp jumps). The structure of the helix was also observed to bifurcate when the external parameter was varied: a helix changed into two interwoven helices, which then changed into three interwoven helices, etc. The smaller the confinement parameter (and, accordingly, the larger the radius of the helical structures) and the stronger the attractive forces between the grains, the larger the number of bifurcations. The results of analytical calculations of the parameters of the equilibrium structures and of their energies are in complete agreement with numerical results. It is also shown that noncollective attraction between dust grains makes it probable that helical structures will exists when the external confinement parameter is zero or even when it is negative. Bifurcations in such systems may provide the possibility of creating new types of memory elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call