Abstract

An advance in making flexible, stretchable batteries may help push these compliant energy storage devices closer to production. Researchers are making rapid progress with flexible electronics for wearable applications and body implants, but progress developing the required power sources lags behind. Numerous research teams have demonstrated approaches to making flexible batteries, for example, ones based on stretchable or coiled interconnects and various wire-battery designs. But those devices have not proved durable enough to withstand thousands of simultaneous multidirectional flexing motions, as needed to commercialize products with long lifetimes. So Ana Claudia Arias of the University of California, Berkeley, and coworkers designed batteries in which current collectors with helical springs or serpentine shapes support all battery components, which are deposited sequentially onto the support (Sci. Adv. 2017, DOI: 10.1126/sciadv.1602051). During testing, the helical batteries withstood more than 17,000 small-radius flexing and bending cycles with no loss in electrochemical performance. And serpentine

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.