Abstract

Control of the spin angular momentum (SAM) carried in a photon provides a technologically attractive element for next-generation quantum networks and spintronics1-5. However, the weak optical activity and inhomogeneity of thin films from chiral molecular crystals result in high noise and uncertainty in SAM detection. Brittleness of thin molecular crystals represents a further problem for device integration and practical realization of chiroptical quantum devices6-10. Despite considerable successes with highly dissymmetric optical materials based on chiral nanostructures11-13, the problem of integration of nanochiral materials with optical device platforms remains acute14-16. Here we report a simple yet powerful method to fabricate chiroptical flexible layers via supramolecular helical ordering of conjugated polymer chains. Their multiscale chirality and optical activity can be varied across the broad spectral range by chiral templating with volatile enantiomers. After template removal, chromophores remain stacked in one-dimensional helical nanofibrils producing a homogeneous chiroptical layer with drastically enhanced polarization-dependent absorbance, leading to well-resolved detection and visualization of SAM. This study provides a direct path to scalable realization of on-chip detection of the spin degree of freedom of photons necessary for encoded quantum information processing and high-resolution polarization imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.