Abstract

Whereas poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI), and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small-angle X-ray scattering (SAXS), and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5-butyl-2,3-thiophene) (P5BT) on highly oriented pyrolytic graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV–vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5-thiophene) (P3HT) (λ = 45...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call