Abstract

A negative linear temperature expansion and a negative linear compressibility were observed for imidazolium benzoate salt. Its strongly anisotropic strain induced by the temperature and pressure changes has been explained by the mechanism of H-bonded helices deformed in the structure. X-ray diffraction and vibrational spectroscopy were used to analyze interactions in the crystal. The Quantum Theory of Atoms in Molecules (QTAiM) approach was applied to analyze the hydrogen bonds and other interactions. In the salt under study, the interactions within the helix are substantially higher in energy than between helices. With decreasing temperature and increasing pressure, the value of the helix pitch increases while the value of the semi-major axis decreases, which results in the negative linear expansion and negative linear compression, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.