Abstract

The paper presents experimental results from the SMOLA device on the testing of the helical mirror confinement hypothesis. Helical mirror confinement is the technique of an active control of axial plasma losses from a confinement zone by multiple magnetic mirrors that move along the axis in the reference frame of the plasma that experiences $\boldsymbol{E} \times \boldsymbol{B}$ rotation due to an applied radial electric field. Theory predicts that a helical mirror will provide an axial force that modifies the plasma flow and, simultaneously, density pinching to the axis. The force direction depends on the plasma rotation direction. Experimental data on the axial plasma losses at different direction of the magnetic mirror movement are presented. If the trapped ions move in the direction opposite to the direction of the axial losses, then the particle flux reduces in the broad range of the plasma density. The confinement improves with the increase of the fraction of the trapped particles (effective mirror ratio was up to $R_{{\rm eff}}=5.8\pm 1.4$ ). If the trapped ions move in the same direction as the axial losses, then the flux depends on density. At intermediate densities, the integral flux through the transport section rises compared to the plasma flowing through the straight magnetic field. The effective mirror ratio is lower and does not significantly depend on the fraction of the trapped particles (effective mirror ratio at intermediate density was $R_{{\rm eff}}=3.3\pm 0.8$ ).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call