Abstract
<p>Magnetic cavities are sudden depressions of magnetic field strength widely observed in the space plasma environments, which are often accompanied by plasma density and pressure enhancement. To describe these cavities, a self-consistent kinetic model has been proposed as an equilibrium solution to the Vlasov-Maxwell equations. However, observations from the Magnetospheric Multi-Scale (MMS) constellation have shown the existence of helical magnetic cavities characterized by the presence of azimuthal magnetic field, which could not be reconstructed by the aforementioned model. Here, we take into account another invariant of motion, the canonical axial momentum, to construct the particle distributions and accordingly modify the equilibrium model. The reconstructed magnetic cavity shows excellent agreement with the MMS1 observations not only in the electromagnetic field and plasma moment profiles but also in electron pitch-angle distributions. With the same set of parameters, the model also predicts signatures of the neighboring MMS3 spacecraft, matching its observations satisfactorily.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.