Abstract

The topological states in quantum Hall insulators and quantum spin Hall insulators that emerge helical are considered nondissipative. However, in crystalline systems without spin-orbit couplings, the existing higher-order topological states are considered not helical, and the energy suffers from dissipation during propagation. In this work, by introducing the intrinsic pseudospin degree of freedom, we theoretically and experimentally present the existence of the helical higher-order topological states in the C_{6}-symmetric topological crystalline insulators based on the acoustic samples. Crucially, rather than considering the global interaction of the large bulk, we further intuitively reveal the impacts of the geometries of the crystal on the generation mechanisms and natural behaviors of these states based on the simple equivalent models. These results provide a versatile way for guiding the design of the desired topological materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.