Abstract
A two-dimensional topological insulator (2DTI) has an insulating bulk and helical edges robust to nonmagnetic backscattering. While ballistic transport has been demonstrated in micron-scale 2DTIs, larger samples show significant backscattering and a nearly temperature-independent resistance of unclear origin. Spin polarization has been measured, however the degree of helicity is difficult to quantify. Here, we study 2DTI few-layer Na3Bi on insulating Al2O3. A nonlocal conductance measurement demonstrates edge conductance in the topological regime with an edge mean free path ∼100 nm. A perpendicular magnetic field suppresses spin-flip scattering in the helical edges, resulting in a giant negative magnetoresistance (GNMR) up to 80% at 0.9 T. Comparison to theory indicates >96% of scattering is helical spin scattering significantly exceeding the maximum (67%) expected for a nonhelical metal. GNMR, coupled with nonlocal measurements, thus provides an unambiguous experimental signature of helical edges that we expect to be generically useful in understanding 2DTIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.