Abstract
AbstractIn the previous study [Elmgren, H. (1984) Biopolymers 23, 2525–2541] concerning the conformation of amylose in aqueous solution, it was stated that amylose in a neutral aqueous solution is a random coil consisting of helical segments. In terms of Kuhn statistics, each segment contains more than 100 monomers. The number of monomers per segment decreases by alkali addition. In an attempt to verify these statements, a combined electron spin resonance (esr) and ultracentrifugation (uc) study of a weakly hydroxyethylated amylose sample in water and alkaline solvents was performed. This combination of measuring techniques makes it possible to estimate the Brownian motion, and thus the mass of the polymer segments. As a control for the obtained esr data, fluorescence depolarization (fdp) measurements were performed on the polymer sample in a bicarbonate buffer at pH 10. The result of the study confirms that the amylose segments are very heavy in water. In strong alkaline solvents, the segment mass corresponds to that of a few monomers. Our findings thus support the statements made in the preceding article, and the data obtained by others. [Kitamura S., Yunokawa H., & Kuge T., (1982) Polym. J. 14, 85–91; Kitamura S., Yunokawa H., Mitsu'ie S., & Kuge T., (1982) Polym J. 14, 93–99].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.