Abstract

Over the past few years, Heisenberg's error-disturbance uncertainty relation has experienced increased attention since several experimental publications verified the theoretical findings of Ozawa predicting the violation and thus necessary reformulation of Heisenberg's relation. However, soon after their appearance, an alternative theory was presented by Busch and co-workers, which proclaimed the validity of Heisenberg's relation and thus gave rise to heated debates. Here, we present an experimental comparison of the competing approaches by applying them to the same neutron optical measurement apparatus. Empirical results for the different definitions of error and disturbance are presented for special input states and configurations of the apparatus to illustrate the opposing approaches. The inequalities restricting errors and disturbances are particularly emphasized. Despite the strong controversy, in the case of projectively measured qubit observables, both approaches lead to equal outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.