Abstract

A Heisenberg model of eight CrIII paramagnetic centers (spins s=3/2) at the vertices of a cube with four distinct exchange interactions is found to provide a reasonably accurate description of the magnetic susceptibility of the cubane-type magnetic molecule [Cr8O4(O2CC6H5)16]={Cr8} from 2–290 K for an external field of 0.5 T. We find that two exchange bonds are antiferromagnetic (13, 24 K) and two are ferromagnetic (5, 13.5 K), with an accuracy of approximately 1 K. The determination of the four exchange constants is greatly facilitated using the exact high-temperature expansion of the weak-field susceptibility, effectively reducing the number of unknown parameters to two. We have calculated the thermodynamic properties of the system and these can be compared with the results of future experiments. At temperatures below 0.5 K sharp increases are expected in the magnetization versus external magnetic field at approximately 6 and 12 T and higher fields due to level crossings. Inelastic neutron scattering could check our predictions for the low-lying magnetic energy levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call